

Centered at O

- \bullet]- ∞ ;+ ∞ [
- **❖**]-1;1[or [-1;1]
- \bullet]- ∞ ;-1[\cup]1;+ ∞ [
- \bullet]- ∞ ;-1] \cup [1;+ ∞ [

Not centered at O

- \bullet]- ∞ ;1[or]- ∞ ;1]
- ❖]-1;+∞[or [-1;+∞[
- **❖** [-1;1[or]-1;1]
- \bullet]- ∞ ;-1[\cup [1;+ ∞ [
- **♦**]- ∞ ;-2] \cup [3;+ ∞ [

Example:

1
$$f(x) = x^2 + |x|$$

D=IR is centered at O
 $f(-x) = (-x)^2 + |-x|$
 $= x^2 + |x|$
 $= f(x)$
So f is even function

Example:

2
$$f(x) = \frac{1}{x}$$

D=]-\infty;0[\cup]0;+\infty[is centered at O
$$f(-x) = \frac{1}{-x} = -\frac{1}{x}$$

$$= -f(x)$$

So f is odd function

Parity of a function (Application)

Study the parity of the function *f* in each case.

- 1 $f(x) = x^2 + 3$ D = IR
 - 1. Domain is $IR=]-\infty;+\infty[$: centered at O
 - 2. $f(-x) = (-x)^2 + 3 = x^2 + 3 = f(x)$ so f is even

2
$$f(x) = x^3 - x D = IR$$

- 1. Domain is $IR=]-\infty;+\infty[$: centered at O
- 2. $f(-x) = (-x)^3 (-x) = -x^3 + x \neq f(x)$ $f(-x) = -(x^3 - x) = -f(x)$ so f is odd

Parity of a function (Application)

Study the parity of the function *f* in each case.

3
$$f(x) = x^4 + 2x^2 D =] - 3;4[$$

Domain is not centered at O so f is not even nor odd

$$4 f(x) = x^4 + 3x - 4 D = IR$$

1. Domain is centered at O

2.
$$f(-x) = (-x)^4 + 3(-x) - 4 = x^4 - 3x - 4 \neq f(x)$$

 $f(-x) = -(-x^4 + 3x + 4) \neq -f(x)$

So *f* is not even nor odd.

Even function

The two points of abscissas x and -x are symmetric with respect to (y'y)

BSA BE SMART ACADEMY

Even function

If f is an even function: (y'y) is an axis of symmetry

BSA BE SMART ACADEMY

Odd function

The two points of abscissas x and -x are symmetric with respect to the origin O

BSA BE SMART ACADEMY

Odd function

If f is an odd function: O(0,0) is a point of symmetry

Parity of a function (Application)

Study the parity of the function *f* in each case.

Even function:

Domain is centered at O (y'y) is an axis of symmetry

Odd function:

Domain is centered at O
O is the center of symmetry

Not even nor odd.

(y'y) is not an axis of
symmetry nor O is a center
of symmetry

Axis of symmetry

How to prove that a vertical line of equation x = a is an axis of symmetry?

1 Domain is centered at a

$$a-x \& a+x \in D_f$$

(this is not required to prove in grade 11)

$$f(a-x) = f(a+x)$$
or
$$f(2a-x) = f(x)$$

Axis of symmetry

Same ordinates f(a - x) = f(a + x)

Axis of symmetry

Example:

$$f(x) = (x - 1)^2 - 1$$

Show that the line of equation x = 1 is an axis of symmetry.

$$D_f = IR =]-\infty; +\infty[$$

Any real number is a center of IR

$$f(2a - x) = f(2(1) - x) = f(2 - x)$$

$$= (2 - x - 1)^{2} - 1$$

$$= (1 - x)^{2} - 1$$

$$= (x - 1)^{2} - 1 = f(x)$$

So the line of equation x = 1 is an axis of symmetry.

Center of symmetry

How to prove that a point of coordinates (a, b) is a center of symmetry?

1 Domain is centered at a

$$a - x \& a + x \in D_f$$

(this is not required to prove in grade 11)

Center of symmetry

The point of abscissa a is the midpoint of the segment joining the points of abscissa a - x and a + x

So
$$f(a) = \frac{f(a-x)+f(a+x)}{2}$$

Then

$$f(a-x) + f(a+x) = 2f(a) = 2b$$

Center of symmetry

Example:

$$f(x) = x^3 - 3x^2 + 2x + 1$$

Show that the point of coordinates (1;1) is a center of symmetry.

$$D_f = IR =]-\infty; +\infty[$$

Any real number is a center of IR

$$f(2a - x) + f(x) = f(2(1) - x) + f(x)$$

$$= f(2 - x) + f(x) = (2 - x)^3 - 3(2 - x)^2 + 2(2 - x) + 1 + x^3 - 3x^2 + 2x + 1$$

$$= 8 - 12x + 6x^{2} - x^{3} - 3(4 - 4x + x^{2}) + 4 - 2x + 1 + x^{3} - 3x^{2} + 2x + 1$$

$$= 14 - 12x + 3x^{2} - 12 + 12x - 3x^{2} = 2 = 2(1)$$

So the point of coordinates (1;1) is a center of symmetry.

Step 1: Calculate f(x) - g(x)

Step 2: Study the sign of f(x) - g(x)

Step 3: Interpret

❖ If
$$f(x) - g(x) > 0$$

$$(C_f)$$
 is above (C_g)

❖ If
$$f(x) - g(x) < 0$$

$$(C_f)$$
 is **below** (C_g)

$$(C_f)$$
 intersects (C_g)

Example:

Study the relative position between the curves of the functions:

$$f(x) = x^2 + 1$$
 and $g(x) = x^3 + x^2 + 1$

$$f(x) - g(x) = x^2 + 1 - x^3 - x^2 - 1 = -x^3$$

\boldsymbol{x}	()
f(x) - g(x)	+ () —
Position between (C_f) and (C_g)	(C_f) above (C_g)	(C_f) below (C_g)

Relative position between a curve and a line of equation y = ax + ax

Same as between two curves

Step 1: Calculate f(x) - y

Step 2: Study the sign of f(x) - y

Step 3: Interpret

❖ If
$$f(x) - y > 0$$

$$(C_f)$$
 is **above** (d)

❖ If
$$f(x) - y < 0$$

$$(C_f)$$
 is **below** (d)

$$(C_f)$$
 intersects (d)

Example:

Study the relative position between the curves of the functions:

$$f(x) = x^2 + 2x$$
 and (d): $y = x + 2$

$$f(x) - y = x^2 + 2x - x - 2 = x^2 + x - 2$$

\boldsymbol{x}	0		1	
f(x) - g(x)	+ 0) +	
Position between	(C_f) above	(C_f) below	(C_f) above	
(C_f) and (C_g)	(d)	(d)	(d)	

Sign of a function (graphically)

The sign of the function, graphically, is determined according to its position with respect to (x'x).

Sign of a function (graphically)

The sign of the function, graphically, is determined according to its position with respect to (x'x).

In this example:

❖
$$f(x) > 0: x \in]-\infty; -1[\cup]1; 3[$$

❖
$$f(x) < 0: x ∈] − 1; 1[∪]3; +∞[$$

$$f(x) = 0: x \in \{-1; 1; 3\}$$

Solving f(x) = k (graphically)

Consider the function f of representative curve (C_f) .

To solve graphically f(x) = k it is sufficient to find the intersecting points between (C_f) and the horizontal line of equation y = k.

Solving f(x) = k (graphically)

Example:

Consider the function f defined over IR and of representative curve (C_f) .

Solve:

1)
$$f(x) = 1$$

3 solutions

2)
$$f(x) = -2$$

2 points of intersection
one double solution

One single

Reflection with respect to (x'x)

 (C_f) and (C_g) are symmetric with respect to (x'x): g(x) = -f(x)

Reflection with respect to (y'y)

 (C_f) and (C_g) are symmetric with respect to (y'y): g(x) = f(-x)

Translation

 (C_g) is the translate of (C_f) by the translation of vector (a, b): g(x) = f(x - a) + b

